3.219 \(\int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=181 \[ \frac {2 (-1)^{3/4} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

2*(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(3/2)/d+(1/4+1/4*I)*arctan
h((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(3/2)/d+3/2*I*tan(d*x+c)^(1/2)/a/d/(a+I*a*tan(d*x
+c))^(1/2)-1/3*tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3558, 3595, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac {2 (-1)^{3/4} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*(-1)^(3/4)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) + ((1/4
+ I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) - Tan[c + d*x]^(3
/2)/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + (((3*I)/2)*Sqrt[Tan[c + d*x]])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3558

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1))/(2*a*f*m), x] + Dist[1/(2*a^2*m), Int[(a
+ b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1))
- d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m,
2*n])

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\sqrt {\tan (c+d x)} \left (-\frac {3 a}{2}+3 i a \tan (c+d x)\right )}{\sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {9 i a^2}{4}-3 a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{a^3}+\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{4 a^2}\\ &=-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d}-\frac {i \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{a d}\\ &=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(2 i) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a d}\\ &=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(2 i) \operatorname {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a d}\\ &=\frac {2 (-1)^{3/4} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.05, size = 217, normalized size = 1.20 \[ -\frac {i e^{-2 i (c+d x)} \sqrt {\tan (c+d x)} \left (\sqrt {-1+e^{2 i (c+d x)}} \left (1-10 e^{2 i (c+d x)}\right )-3 e^{3 i (c+d x)} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )+12 \sqrt {2} e^{3 i (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {2} e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{6 \sqrt {2} a d \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-1/6*I)*((1 - 10*E^((2*I)*(c + d*x)))*Sqrt[-1 + E^((2*I)*(c + d*x))] - 3*E^((3*I)*(c + d*x))*ArcTanh[E^(I*(c
 + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] + 12*Sqrt[2]*E^((3*I)*(c + d*x))*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sq
rt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*a*d*E^((2*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*
x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

fricas [B]  time = 0.66, size = 611, normalized size = 3.38 \[ -\frac {{\left (3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {1}{2} i \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-\frac {1}{2} i \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, a^{2} d \sqrt {\frac {4 i}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {208 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} + {\left (156 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - 52 i \, a^{2} d\right )} \sqrt {\frac {4 i}{a^{3} d^{2}}}}{605 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) + 3 \, a^{2} d \sqrt {\frac {4 i}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {208 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} + {\left (-156 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + 52 i \, a^{2} d\right )} \sqrt {\frac {4 i}{a^{3} d^{2}}}}{605 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (10 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 9 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(1/2*I*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(I*d*x + I*c)
 + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*
(e^(2*I*d*x + 2*I*c) + 1)) - 3*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(-1/2*I*a^2*d*sqrt(1/2*I/(a^
3*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(
2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - 3*a^2*d*sqrt(4*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(1/605*
(208*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e
^(3*I*d*x + 3*I*c) + e^(I*d*x + I*c)) + (156*I*a^2*d*e^(2*I*d*x + 2*I*c) - 52*I*a^2*d)*sqrt(4*I/(a^3*d^2)))/(e
^(2*I*d*x + 2*I*c) + 1)) + 3*a^2*d*sqrt(4*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(1/605*(208*sqrt(2)*sqrt(a/(e^(2
*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3*I*d*x + 3*I*c) + e^(I
*d*x + I*c)) + (-156*I*a^2*d*e^(2*I*d*x + 2*I*c) + 52*I*a^2*d)*sqrt(4*I/(a^3*d^2)))/(e^(2*I*d*x + 2*I*c) + 1))
 - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(10*
I*e^(4*I*d*x + 4*I*c) + 9*I*e^(2*I*d*x + 2*I*c) - I))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (d x + c\right )^{\frac {5}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)^(5/2)/(I*a*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.18, size = 771, normalized size = 4.26 \[ \frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (9 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a +24 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) a -3 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a -3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -72 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )+80 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+9 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, \tan \left (d x +c \right ) a +72 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a -44 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-24 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +36 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/24/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(9*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a+24*I*ln(1/2*(2*I*a*tan(d*x
+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^3*a-3*(I*a)^(1
/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)
+I))*tan(d*x+c)^3*a-3*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-72*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(
I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a+80*I*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+
c)))^(1/2)*tan(d*x+c)+9*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))
/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*tan(d*x+c)*a+72*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+
I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)^2*a-44*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)
^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-24*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/
2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+36*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2))/a^2/(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^3

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{\frac {5}{2}}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**(5/2)/(I*a*(tan(c + d*x) - I))**(3/2), x)

________________________________________________________________________________________